Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting
نویسندگان
چکیده
Viral infection depends on a complex interplay between host and viral factors. Here, we link host susceptibility to viral infection to a network encompassing sulfur metabolism, tRNA modification, competitive binding, and programmed ribosomal frameshifting (PRF). We first demonstrate that the iron-sulfur cluster biosynthesis pathway in Escherichia coli exerts a protective effect during lambda phage infection, while a tRNA thiolation pathway enhances viral infection. We show that tRNA(Lys) uridine 34 modification inhibits PRF to influence the ratio of lambda phage proteins gpG and gpGT. Computational modeling and experiments suggest that the role of the iron-sulfur cluster biosynthesis pathway in infection is indirect, via competitive binding of the shared sulfur donor IscS. Based on the universality of many key components of this network, in both the host and the virus, we anticipate that these findings may have broad relevance to understanding other infections, including viral infection of humans.
منابع مشابه
P-site tRNA is a crucial initiator of ribosomal frameshifting.
The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P...
متن کاملRibosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves -1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or -2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influen...
متن کاملA frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation.
Ribosomal frameshifting occurs when a ribosome slips a few nucleotides on an mRNA and generates a new sequence of amino acids. Programmed -1 ribosomal frameshifting (-1PRF) is used in various systems to express two or more proteins from a single mRNA at precisely regulated levels. We used single-molecule fluorescence resonance energy transfer (smFRET) to study the dynamics of -1PRF in the Esche...
متن کاملA novel role for poly(C) binding proteins in programmed ribosomal frameshifting
Translational control through programmed ribosomal frameshifting (PRF) is exploited widely by viruses and increasingly documented in cellular genes. Frameshifting is induced by mRNA secondary structures that compromise ribosome fidelity during decoding of a heptanucleotide 'slippery' sequence. The nsp2 PRF signal of porcine reproductive and respiratory syndrome virus is distinctive in directing...
متن کاملEvidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses.
Flaviviruses have a positive-sense, single-stranded RNA genome of approximately 11 kb, encoding a large polyprotein that is cleaved to produce approximately 10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence fo...
متن کامل